Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Pilot Feasibility Stud ; 9(1): 47, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949526

RESUMO

BACKGROUND: The COVID-19 pandemic forced healthcare institutions and many clinical research programs to adopt telehealth modalities in order to mitigate viral spread. With the expanded use of telehealth, there is the potential to increase access to genomic medicine to medically underserved populations, yet little is known about how best to communicate genomic results via telehealth while also ensuring equitable access. NYCKidSeq, a multi-institutional clinical genomics research program in New York City, launched the TeleKidSeq pilot study to assess alternative forms of genomic communication and telehealth service delivery models with families from medically underserved populations. METHODS: We aim to enroll 496 participants between 0 and 21 years old to receive clinical genome sequencing. These individuals have a neurologic, cardiovascular, and/or immunologic disease. Participants will be English- or Spanish-speaking and predominantly from underrepresented groups who receive care in the New York metropolitan area. Prior to enrollment, participants will be randomized to either genetic counseling via videoconferencing with screen-sharing or genetic counseling via videoconferencing without screen-sharing. Using surveys administered at baseline, results disclosure, and 6-months post-results disclosure, we will evaluate the impact of the use of screen-sharing on participant understanding, satisfaction, and uptake of medical recommendations, as well as the psychological and socioeconomic implications of obtaining genome sequencing. Clinical utility, cost, and diagnostic yield of genome sequencing will also be assessed. DISCUSSION: The TeleKidSeq pilot study will contribute to innovations in communicating genomic test results to diverse populations through telehealth technology. In conjunction with NYCKidSeq, this work will inform best practices for the implementation of genomic medicine in diverse, English- and Spanish-speaking populations.

3.
Mol Genet Genomic Med ; 11(1): e2093, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369844

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is an autosomal recessive disease, whereby homozygous inheritance of an expanded GAA trinucleotide repeat expansion in the first intron of the FXN gene leads to transcriptional repression of the encoded protein frataxin. FRDA is a progressive neurodegenerative disorder, but the primary cause of death is heart disease which occurs in 60% of the patients. Several functions of frataxin have been proposed, but none of them fully explain why its deficiency causes the FRDA phenotypes nor why the most affected cell types are neurons and cardiomyocytes. METHODS: To investigate, we generated iPSC-derived neurons (iNs) and cardiomyocytes (iCMs) from an FRDA patient and upregulated FXN expression via lentivirus without altering genomic GAA repeats at the FXN locus. RESULTS: RNA-seq and differential gene expression enrichment analyses demonstrated that frataxin deficiency affected the expression of glycolytic pathway genes in neurons and extracellular matrix pathway genes in cardiomyocytes. Genes in these pathways were differentially expressed when compared to a control and restored to control levels when FRDA cells were supplemented with frataxin. CONCLUSIONS: These results offer novel insight into specific roles of frataxin deficiency pathogenesis in neurons and cardiomyocytes.


Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Expressão Gênica , Neurônios/metabolismo , Neurônios/patologia , Frataxina
4.
J Community Genet ; 13(6): 629-639, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36203036

RESUMO

Currently, no standardized system exists for evaluating and testing at-risk family members of decedents with abnormal post-mortem genetic testing in cases of sudden unexpected death (SUD). The goal of this study was to evaluate the outcomes of referrals made by an urban medical examiner's office to a multi-disciplinary cardiogenetics clinic. Relatives of decedents with pathogenic/likely pathogenic (P/LP) variants or variants of unknown significance (VUS) in genes known to be associated with cardiomyopathies and/or arrhythmias were identified by the New York City Office of Chief Medical Examiner and referred to the Cardiogenetics Clinic at Montefiore Medical Center. Familial referrals of 15 decedents (median 15 years, range 2 days to 57 years) were evaluated. Variants in 13 genes were identified among decedents (9 arrhythmia, 5 cardiomyopathy). P/LP variants were identified in both arrhythmia (RYR2, SCN5A) and cardiomyopathy syndrome (MYBPC3 (2), MYH7) genes. Thirty-two family members were referred, and 14 variants were detected. One pathogenic (MYBPC3) and two likely pathogenic (RYR2, MYH7) mutations were identified. Referral of at-risk family members of decedents who experienced SUD based on informative post-mortem genetic testing for cardiac and genetic evaluation is warranted, as family studies help to reclassify variants and prevent additional sudden death.

6.
Int J Biochem Cell Biol ; 143: 106137, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923139

RESUMO

Friedreich ataxia is an autosomal recessive congenital neurodegenerative disease caused by a deficiency in the frataxin protein and is often diagnosed in young adulthood. An expansion of guanine-adenine-adenine repeats in the first intron of the FXN gene leads to decreased frataxin expression. Frataxin plays an essential role in mitochondrial metabolism. Most Friedreich ataxia patients are diagnosed with left ventricular hypertrophic cardiomyopathy, and 60% of patients die with hypertrophic cardiomyopathy. However, the mitochondrial anatomy in Friedreich ataxia hypertrophic cardiomyopathy is still poorly understood. We investigated mitochondrial fission, fusion, and function using biochemical, microscopy, and computational stochastic analysis in human induced pluripotent stem cell derived cardiomyocytes from a patient with Friedreich ataxia hypertrophic cardiomyopathy and a healthy individual. We found a significantly higher mitochondrial footprint, decreased mitochondrial fission protein dynamin-related protein, and mitochondrial fission rate over fusion with more giant mitochondrial clusters in human induced pluripotent stem cell derived cardiomyocytes from a patient with Friedreich ataxia hypertrophic cardiomyopathy, compared to an unaffected individual. We also found significantly depolarized mitochondrial membrane potential and higher reactive oxygen species levels in Friedreich ataxia human induced pluripotent stem cell cardiomyocytes. Our results show that frataxin's depletion may dampen the mitochondrial fission machinery by reducing dynamin-related protein1. The loss of mitochondrial fission might lead to elevated reactive oxygen species and depolarized mitochondrial membrane potential, which may cause oxidative damage in Friedreich ataxia hypertrophic cardiomyopathy. Further investigations are needed to identify the mechanism of downregulating dynamin-related protein1 due to the frataxin deficiency in Friedreich ataxia hypertrophic cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica/genética , Dinaminas/metabolismo , Ataxia de Friedreich/genética , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Adolescente , Cardiomiopatia Hipertrófica/patologia , Criança , Feminino , Ataxia de Friedreich/patologia , Humanos , Masculino
7.
Stem Cell Res ; 53: 102394, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088019

RESUMO

Dilated Cardiomyopathy (DCM) is one of the main causes of sudden cardiac death and heart failure and is the leading indication for cardiac transplantation worldwide. Mutations in different genes including TTN, MYH7, and LMNA, have been linked to the development of DCM. Here, we generated a human induced pluripotent stem cell (IPSC) line from a DCM patient with a familial history that carries a frameshift mutation in Filamin C (FLNC). The IPSCs show typical morphology of pluripotent cells, expression of pluripotency markers, normal karyotype, and in vitro capacity to differentiate into all three germ layers.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Dilatada/genética , Filaminas/genética , Heterozigoto , Humanos , Mutação
8.
Stem Cell Res ; 54: 102399, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34034220

RESUMO

Friedreich's Ataxia (FA) is an autosomal recessive disorder with an incidence of 1 in 50,000 in Caucasians. Most cases are caused by a biallelic GAA expansion in the first intron of the Frataxin (FXN) gene. FA is a neurodegenerative disease, but the leading cause of death is hypertrophic cardiomyopathy (HCM) that develops in 60% of the patients. We generated an induced pluripotent stem cell (iPSC) line from an FA patient with a homozygous GAA expansion in intron 1 of the FXN gene. The IPSCs display pluripotent cell morphology, expression of pluripotency markers, normal karyotype, and the capability to differentiate into all three germ layers.


Assuntos
Cardiomiopatia Hipertrófica , Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Ataxia de Friedreich/genética , Homozigoto , Humanos , Expansão das Repetições de Trinucleotídeos
9.
Stem Cell Res ; 54: 102398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34034221

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an autosomal dominant inherited disease, with variable penetrance and expressivity. Currently, more than 14 different genetic loci have been reported for ARVC, the majority being desmosomal genes like Plakophilin-2 (PKP2). Here, we generated an iPSC cell line bearing a pathogenic heterozygous mutation in PKP2 (c.1799delA) from a patient affected by ARVC. Peripheral blood mononuclear cells were reprogrammed by Sendai virus vectors encoding KOS, KLF4, and c-MYC. Derived iPSCs expressed pluripotent markers, showed intact karyotype and demonstrated the ability to differentiate into three germ layers.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Displasia Arritmogênica Ventricular Direita/genética , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Leucócitos Mononucleares , Mutação , Placofilinas/genética
10.
Stem Cell Res ; 54: 102396, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029931

RESUMO

Mutations in the gene that encodes the nuclear envelope proteins lamin A/C (LMNA) are considered to be a prominent cause of Dilated cardiomyopathy (DCM), a leading cause of heart failure and a prevalent indication for heart transplant. Here we described the generation of induced pluripotent stem cells (iPSCs) from a 53-year-old female with DCM plus progressive conduction disease who carry a heterozygous mutation in LMNA (c.1621C > T, p.R541C). PBMCs isolated from the patient were reprogrammed with Yamanaka factors KOS, KLF4, and c-MYC by the non-integrating sendai virus vector system. The obtained iPSC lines demonstrated normal karyotype and pluripotent identity.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Dilatada/genética , Linhagem Celular , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Lamina Tipo A/genética , Pessoa de Meia-Idade , Mutação
11.
Mol Genet Genomics ; 296(4): 823-836, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33876311

RESUMO

Next-generation sequencing platforms are being increasingly applied in clinical genetic settings for evaluation of families with suspected heritable disease. These platforms potentially improve the diagnostic yield beyond that of disease-specific targeted gene panels, but also increase the number of rare or novel genetic variants that may confound precise diagnostics. Here, we describe a functional testing approach used to interpret the results of whole exome sequencing (WES) in a family presenting with syncope and sudden death. One individual had a prolonged QT interval on electrocardiogram (ECG) and carried a diagnosis of long QT syndrome (LQTS), but a second individual did not meet criteria for LQTS. Filtering WES results for uncommon variants with arrhythmia association identified four for further analyses. In silico analyses indicated that two of these variants, KCNH2 p.(Cys555Arg) and KCNQ1 p.(Arg293Cys), were likely to be causal in this family's LQTS. We subsequently performed functional characterization of these variants in a heterologous expression system. The expression of KCNQ1-Arg293Cys did not show a deleterious phenotype but KCNH2-Cys555Arg demonstrated a loss-of-function phenotype that was partially dominant. Our stepwise approach identified a precise genetic etiology in this family, which resulted in the establishment of a LQTS diagnosis in the second individual as well as an additional asymptomatic family member, enabling personalized clinical management. Given its ability to aid in the diagnosis, the application of functional characterization should be considered as a value adjunct to in silico analyses of WES.


Assuntos
Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos/genética , Análise Mutacional de DNA/métodos , Eletrocardiografia , Família , Feminino , Testes Genéticos/métodos , Células HEK293 , Testes de Função Cardíaca/métodos , Humanos , Canal de Potássio KCNQ1/genética , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Sequenciamento do Exoma
13.
Trials ; 22(1): 56, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446240

RESUMO

BACKGROUND: Increasingly, genomics is informing clinical practice, but challenges remain for medical professionals lacking genetics expertise, and in access to and clinical utility of genomic testing for minority and underrepresented populations. The latter is a particularly pernicious problem due to the historical lack of inclusion of racially and ethnically diverse populations in genomic research and genomic medicine. A further challenge is the rapidly changing landscape of genetic tests and considerations of cost, interpretation, and diagnostic yield for emerging modalities like whole-genome sequencing. METHODS: The NYCKidSeq project is a randomized controlled trial recruiting 1130 children and young adults predominantly from Harlem and the Bronx with suspected genetic disorders in three disease categories: neurologic, cardiovascular, and immunologic. Two clinical genetic tests will be performed for each participant, either proband, duo, or trio whole-genome sequencing (depending on sample availability) and proband targeted gene panels. Clinical utility, cost, and diagnostic yield of both testing modalities will be assessed. This study will evaluate the use of a novel, digital platform (GUÍA) to digitize the return of genomic results experience and improve participant understanding for English- and Spanish-speaking families. Surveys will collect data at three study visits: baseline (0 months), result disclosure visit (ROR1, + 3 months), and follow-up visit (ROR2, + 9 months). Outcomes will assess parental understanding of and attitudes toward receiving genomic results for their child and behavioral, psychological, and social impact of results. We will also conduct a pilot study to assess a digital tool called GenomeDiver designed to enhance communication between clinicians and genetic testing labs. We will evaluate GenomeDiver's ability to increase the diagnostic yield compared to standard practices, improve clinician's ability to perform targeted reverse phenotyping, and increase the efficiency of genetic testing lab personnel. DISCUSSION: The NYCKidSeq project will contribute to the innovations and best practices in communicating genomic test results to diverse populations. This work will inform strategies for implementing genomic medicine in health systems serving diverse populations using methods that are clinically useful, technologically savvy, culturally sensitive, and ethically sound. TRIAL REGISTRATION: ClinicalTrials.gov NCT03738098 . Registered on November 13, 2018 Trial Sponsor: Icahn School of Medicine at Mount Sinai Contact Name: Eimear Kenny, PhD (Principal Investigator) Address: Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., Box 1003, New York, NY 10029 Email: eimear.kenny@mssm.edu.


Assuntos
Testes Genéticos , Genômica , Criança , Humanos , Cidade de Nova Iorque , Pais , Projetos Piloto , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Adulto Jovem
14.
Front Physiol ; 12: 778982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975533

RESUMO

Mutations in the LMNA gene (encoding lamin A/C) are a significant cause of familial arrhythmogenic cardiomyopathy. Although the penetrance is high, there is considerable phenotypic variability in disease onset, rate of progression, arrhythmias, and severity of myopathy. To begin to address whether this variability stems from specific LMNA mutation sites and types, we generated seven patient-specific induced pluripotent stem cell (iPSC) lines with various LMNA mutations. IPSC-derived cardiomyocytes (iCMs) and cardiac fibroblasts (iCFs) were differentiated from each line for phenotypic analyses. LMNA expression and extracellular signal-regulated kinase pathway activation were perturbed to differing degrees in both iCMs and iCFs from the different lines. Enhanced apoptosis was observed in iCMs but not in iCFs. Markedly diverse irregularities of nuclear membrane morphology were present in iCFs but not iCMs, while iCMs demonstrated variable sarcomere disarray. Heterogenous electrophysiological aberrations assayed by calcium indicator imaging and multi-electrode array suggest differing substrates for arrhythmia that were accompanied by variable ion channel gene expression in the iCMs. Coculture studies suggest enhancement of the LMNA mutation effects on electrophysiological function exerted by iCFs. This study supports the utility of patient-specific iPSC experimental platform in the exploration of mechanistic and phenotypic heterogeneity of different mutations within a cardiac disease-associated gene. The addition of genetically defined coculture of cardiac-constituent non-myocytes further expands the capabilities of this approach.

15.
Am J Physiol Heart Circ Physiol ; 320(1): H133-H143, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216635

RESUMO

The usage of flavored electronic nicotine delivery systems (ENDS) is popular, specifically in the teen and young adult age-groups. The possible cardiac toxicity of the flavoring aspect of ENDS is largely unknown. Vaping, a form of electronic nicotine delivery, uses "e-liquid" to generate "e-vapor," an aerosolized mixture of nicotine and/or flavors. We report our investigation into the cardiotoxic effects of flavored e-liquids. E-vapors containing flavoring aldehydes such as vanillin and cinnamaldehyde, as indicated by mass spectrometry, were more toxic in HL-1 cardiomyocytes than fruit-flavored e-vapor. Exposure of human induced pluripotent stem cell-derived cardiomyocytes to cinnamaldehyde or vanillin-flavored e-vapor affected the beating frequency and prolonged the field potential duration of these cells more than fruit-flavored e-vapor. In addition, vanillin aldehyde-flavored e-vapor reduced the human ether-à-go-go-related gene (hERG)-encoded potassium current in transfected human embryonic kidney cells. In mice, inhalation exposure to vanillin aldehyde-flavored e-vapor for 10 wk caused increased sympathetic predominance in heart rate variability measurements. In vivo inducible ventricular tachycardia was significantly longer, and in optical mapping, the magnitude of ventricular action potential duration alternans was significantly larger in the vanillin aldehyde-flavored e-vapor-exposed mice than in controls. We conclude that the widely popular flavored ENDS are not harm free, and they have a potential for cardiac harm. More studies are needed to further assess their cardiac safety profile and long-term health effects.NEW & NOTEWORTHY The use of electronic nicotine delivery systems (ENDS) is not harm free. It is not known whether ENDS negatively affect cardiac electrophysiological function. Our study in cell lines and in mice shows that ENDS can compromise cardiac electrophysiology, leading to action potential instability and inducible ventricular arrhythmias. Further investigations are necessary to assess the long-term cardiac safety profile of ENDS products in humans and to better understand how individual components of ENDS affect cardiac toxicity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Taquicardia Ventricular/induzido quimicamente , Vaping/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Administração por Inalação , Animais , Cardiotoxicidade , Canal de Potássio ERG1/metabolismo , Feminino , Aromatizantes/administração & dosagem , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo
16.
Am J Physiol Heart Circ Physiol ; 318(2): H212-H222, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834838

RESUMO

The cardiac potassium IKs current is carried by a channel complex formed from α-subunits encoded by KCNQ1 and ß-subunits encoded by KCNE1. Deleterious mutations in either gene are associated with hereditary long QT syndrome. Interactions between the transmembrane domains of the α- and ß-subunits determine the activation kinetics of IKs. A physical and functional interaction between COOH termini of the proteins has also been identified that impacts deactivation rate and voltage dependence of activation. We sought to explore the specific physical interactions between the COOH termini of the subunits that confer such control. Hydrogen/deuterium exchange coupled to mass spectrometry narrowed down the region of interaction to KCNQ1 residues 352-374 and KCNE1 residues 70-81, and provided evidence of secondary structure within these segments. Key mutations of residues in these regions tended to shift voltage dependence of activation toward more depolarizing voltages. Double-mutant cycle analysis then revealed energetic coupling between KCNQ1-I368 and KCNE1-D76 during channel activation. Our results suggest that the proximal COOH-terminal regions of KCNQ1 and KCNE1 participate in a physical and functional interaction during channel opening that is sensitive to perturbation and may explain the clustering of long QT mutations in the region.NEW & NOTEWORTHY Interacting ion channel subunits KCNQ1 and KCNE1 have received intense investigation due to their critical importance to human cardiovascular health. This work uses physical (hydrogen/deuterium exchange with mass spectrometry) and functional (double-mutant cycle analyses) studies to elucidate precise and important areas of interaction between the two proteins in an area that has eluded structural definition of the complex. It highlights the importance of pathogenic mutations in these regions.


Assuntos
Citoplasma/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Clonagem Molecular , Cricetinae , Deutério/metabolismo , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Hidrogênio/metabolismo , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação , Plasmídeos/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
17.
Hum Mutat ; 40(3): 357, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30740826
18.
Cardiovasc Pathol ; 37: 30-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30282064

RESUMO

Our aim is to characterize predicted protein-truncating variants (PTVs) in MYBPC3, the gene most commonly associated with hypertrophic cardiomyopathy (HCM), found in a series of autopsied HCM cases after sudden unexpected cardiac death. All cases underwent death scene investigation, gross and microscopic autopsies, toxicological testing, a review of medical records, and a molecular analysis of 95 cardiac genes. We found four pathogenic PTVs in MYBPC3 among male decedents. All variants were previously submitted to ClinVar without phenotype details. Two PTVs were located in the cardiac-specific myosin S2-binding (M) motif at the N-terminus of the MYBPC3-encoded cMyBP-C protein, and two PTVs were in the non-cardiac-specific C-terminus of the protein. The carriers of two cardiac-specific M-motif PTVs died at age 38 years; their heart weight (HW, g) and body mass index (BMI, kg/m2) ratio were 34.90 (890/25.5) and 23.56 (980/41.6), respectively. In contrast, the carriers of two non-cardiac-specific C-terminal PTVs died at age 57 and 67 years, respectively; their HW and BMI ratio were 14.71 (450/30.6) and 13.98 (600/42.9), respectively. A detailed three-generation family study was conducted in one case. This study showed age-at-death variations among MYBPC3 PTVs carriers in adult males.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Morte Súbita Cardíaca/etiologia , Mutação , Adulto , Fatores Etários , Idoso , Autopsia , Cardiomiopatia Hipertrófica/patologia , Causas de Morte , Análise Mutacional de DNA , Morte Súbita Cardíaca/patologia , Feminino , Predisposição Genética para Doença , Hereditariedade , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
19.
Can J Cardiol ; 34(9): 1174-1184, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30170673

RESUMO

BACKGROUND: Deleterious mutations in KCNQ1 may lead to an autosomal dominant form of long QT syndrome (LQTS) (Romano-Ward) or autosomal recessive form (Jervell and Lange-Nielsen). Both are associated with severe ventricular tachyarrhythmias due to the reduction of the slowly activating delayed rectifier K+ current (IKs). Our objective was to investigate the functional consequences of KCNQ1-R562S mutation in an atypical form of KCNQ1-linked LQTS. METHODS: Mutant KCNQ1-R562S was analyzed via confocal imaging, surface biotinylation assays, co-immunoprecipitation, phosphatidylinositol-4,5-bisphosphate pulldown test, whole-cell patch clamp, and computational intrinsic disorder analyses. RESULTS: Protein expression, assembly with KCNE1, and trafficking to the surface membrane of KCNQ1-R562S were comparable with wild-type channels. The most significant functional effect of the R562S mutation was a depolarizing shift in the voltage dependence of activation that was dependent on association with KCNE1. The biophysical abnormality was only partially dominant over coexpressed wild-type channels. R562S mutation impaired C-terminal association with membrane phosphatidylinositol-4,5-bisphosphate. These changes led to compromised rate-related accumulation of repolarizing current that is an important property of normal IKs. CONCLUSIONS: KCNQ1-R562S mutation reduces effective IKs due to channel gating alteration with a mild clinical expression in the heterozygous state due to minimal dominant phenotype. In the homozygous state, it is exhibited with a moderately severe LQTS phenotype due to the incomplete absence of IKs.


Assuntos
Canal de Potássio KCNQ1/genética , Síndrome de Romano-Ward/genética , Biotinilação/métodos , Heterozigoto , Homozigoto , Humanos , Imunoprecipitação/métodos , Microscopia Confocal/métodos , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Índice de Gravidade de Doença
20.
J Biol Chem ; 293(31): 12120-12136, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29907571

RESUMO

Synonymous nucleotide variation is increasingly recognized as a factor than can affect protein expression, but the underlying mechanisms are incompletely understood. Here, we investigated whether synonymous changes could affect expression of the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene, encoding the human ether-a-go-go-related gene (hERG) ion channel, which is linked to hereditary cardiac arrhythmia. We examined a previously described synthetic version (hERG-codon modified (CM)) with synonymous substitutions designed to reduce GC content, rare codons, and mRNA secondary structure relative to the native construct (hERG-NT). hERG-CM exhibited lower protein expression than hERG-NT in HEK293T cells. We found that the steady-state abundance of hERG-NT mRNA was greater than hERG-CM because of an enhanced transcription rate and increased mRNA stability for hERG-NT. Translation of hERG-CM was independently reduced, contributing to the overall greater synthesis of hERG-NT channel protein. This was partially offset, however, by a higher aggregation of a newly synthesized hERG-NT channel, resulting in nonfunctional protein. Regional mRNA analyses of chimeras of hERG-NT and hERG-CM revealed that synonymous changes in the 5' segments of the coding region had the greatest influence on hERG synthesis at both the mRNA and protein levels. Taken together, these results indicate that synonymous nucleotide variations within the coding region, particularly in the 5' region of the hERG mRNA, can affect both transcription and translation. These findings support the notion that greater attention should be given to the effects of synonymous genetic variation when analyzing hERG DNA sequences in the study of hereditary cardiac disease.


Assuntos
Canal de Potássio ERG1/química , Nucleotídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , Mutação Silenciosa , Transcrição Gênica , Composição de Bases , Códon/genética , Códon/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana/genética , Conformação de Ácido Nucleico , Nucleotídeos/genética , Nucleotídeos/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/química , Plasmídeos/metabolismo , Agregados Proteicos , Domínios Proteicos , Engenharia de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...